

Introduction

The Agilent B1500A Semiconductor Device Analyzer, with EasyEXPERT software, makes every user a parametric test expert. The MS Windowsbased EasyEXPERT interface is familiar, even to new engineers who are inexperienced with parametric measurement instruments. Its unique task-based approach enables the user to focus on their real task-at-hand (device characterization), without having to become a specialist at using the instrument hardware. This new approach is enhanced via a touch screen interface, which makes the instrument as easy to use when racked as when on a benchtop.

The modular 10 -slot configuration helps reduce the cost of test by ensuring that you purchase only what you need up-front, leaving room to grow as your needs change. This flexibility is advantageous for those needing capacitance measurement, as this function is available via a single-slot capacitance measurement unit (CMU). An innovative SMU CMU unify unit (SCUU) is available to eliminate cabling confusion when connecting the SMUs and CMU to your positioner-based wafer probing environment. This greatly improves efficiency and accuracy by resolving cable swapping and measurement compensation issues.

Agilent B1500A Semiconductor Device Analyzer

Technical Overview
April 2006

Agilent B1500A Semiconductor Device Analyzer

The B1500A also possesses impresssive measurement performance, with available low-current measurement of 0.1 femtoamp and low-voltage measurement resolution of 0.5 microvolts.

Basic Features

- EasyEXPERT software resident on instrument
- Performs IV and CV measurements
- Ten module slots
- Multiple SMU types available: MPSMU, HPSMU, and HRSMU
- Multi-frequency capacitance measurement unit (1 kHz to 5 MHz) available
- High-resolution, analog-to-digital converter (ADC) available to all installed modules
- High-speed ADC present on each installed SMU
- 4.2-Amp ground unit
- SMU/AUX path switching available on the Atto Sense and Switch Unit (ASU)
- Supported CMU accessories include SMU CMU unify unit (SCUU) and guard switch unit (GSWU)
- Automatic identification of capacitance measurement accessories (MFCMU)
- GPIB port for instrument control
- Self- test, self-calibration, diagnostics

Specification Conditions

The measurement and output accuracies are specified under the following conditions. And the SMU measurement and output accuracies are specified at the SMU connector terminals when referenced to the Zero Check terminal:

1. Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
2. Humidity: 20% to 60%
3. After 40 minutes warm-up
4. Ambient temperature change less than $\pm 1^{\circ} \mathrm{C}$ after self-calibration execution, not applicable for MFCMU
5. Measurement made within one hour after self- calibration execution, not applicable for MFCMU
B1500A Specification
6. Calibration period: 1 year
7. SMU integration time setting (high-resolution ADC must be used):
1 PLC (1 nA to 1A range, voltage range) 20 PLC (100 pA range) 50 PLC (1 pA to 10 pA range)
8. SMU Filter: ON (for SMUs)
9. SMU measurement terminal connection: Kelvin connection Note: This document lists specifications and supplemental information for the B1500A and its associated modules. The specifications are the standards against which the B1500A and its associated modules are tested. When the B1500A or any of its associated modules are shipped from the factory, they meet the specifications. The "supplemental"
information and "typical" entries in the following specifications are not warranted, but provide useful information about the functions and performance of the instrument.

Note: When you install or exchange modules into the B1500A mainframes, Agilent can guarantee that the modules will function and that the module performance is designed to meet its specifications. However, if you require that the modules be guaranteed to their specifications, then you must perform a calibration on the instrument.

Supported Plug-In Modules

The B1500A supports ten slots for plug-in modules.

Part Number	Description	Slots Occupied	Range of Operation	Measure Resolution
B1510A	High Power Source/Monitor Unit (HPSMU)	2	-200 V to $200 \mathrm{~V},-1 \mathrm{~A}$ to 1 A	$2 \mu \mathrm{~V}, 10 \mathrm{fA}$
B1511A	Medium Power Source/Monitor Unit (MPSMU)	1	-100 V to $100 \mathrm{~V},-100 \mathrm{~mA}$ to 100 mA	$0.5 \mu \mathrm{~V}, 10 \mathrm{fA}$
B1517A	High Resolution Source/Monitor Unit (HRSMU)	1	-100 V to $100 \mathrm{~V},-100 \mathrm{~mA}$ to 100 mA	$0.5 \mu \mathrm{~V}, 1 \mathrm{fA}$
${\mathrm{E} 5288 \mathrm{~A}^{1}}^{\text {B1520A }}$	Atto Sense and Switch Unit (ASU)	-	-100 V to $100 \mathrm{~V},-100 \mathrm{~mA}$ to 100 mA	$0.5 \mu \mathrm{~V}, 100 \mathrm{aA}$
Multi Frequency Capacitance Measurement Unit (MFCMU)	1	1 kHz to 5 MHz	$0.035 \mathrm{fFrms}{ }^{2}$	

1. This is connected with the B1517A high resolution SMU.
2. Dispersion of measurement values when connecting a DUT 10 pF to the measurement terminals under the measurement condition of frequency 1 MHz , signal level 250 mVac , and measurement time 1 PLC. The display resolution is 0.000001 fF at 1 fF order by 6 digits display.

Maximum Output Power

The total power consumption of all modules cannot exceed 82 W . Under this rule, the B1500A can contain up to 4 dual-slot SMUs (HPSMUs) and 2 single-slot SMUs (MPSMUs and/or HRSMUs); it can contain up to 10 single-slot SMUs (MPSMUs and/or HRSMUs); and it can contain any combination of dual-slot and single-slot SMUs between these two extremes. One single-slot MFCMU may take the place of a single-slot SMU in any of these configurations.

Maximum Voltage between Common and Ground
 $\leq \pm 42 \mathrm{~V}$.

Pulse Measurement

Pulse width: $500 \mu \mathrm{sec}$ to 2 s
Pulse period: 5 ms to 5 s
Period \geq Width +2 ms
(when Width $\leq 100 \mathrm{~ms}$)
Period \geq Width +10 ms
(when Width > 100 ms)
Pulse resolution: $100 \mu \mathrm{~s}$

Ground Unit (GNDU) Specification

The GNDU is furnished with the B1500A mainframe.
Output Voltage: $0 \mathrm{~V} \pm 100 \mu \mathrm{~V}$
Maximum sink current: $\pm 4.2 \mathrm{~A}$ Output terminal/connection:
Triaxial connector, Kelvin (remote sensing)

GNDU Supplemental Information Load capacitance: $1 \mu \mathrm{~F}$

Cable resistance: innocent
For $\mathrm{I}_{\mathrm{S}} \leq 1.6$ A:
Force Line $\mathrm{R}<1 \Omega$
For $1.6 \mathrm{~A}<\mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~A}$:
Force Line $\mathrm{R}<0.7 \Omega$
For 2.0 A $<\mathrm{I}_{\mathrm{S}} \leq 4.2 \mathrm{~A}$:
Force Line $\mathrm{R}<0.35 \Omega$
For all cases:
Sense Line $\mathrm{R} \leq 10 \Omega$
Where I_{S} is the current being sunk by the GNDU.

MPSMU and HRSMU Module Specifications

Voltage Range, Resolution, and Accuracy (High Resolution ADC)

Voltage Range	Force Resolution	Measure Resolution	Force Accuracy	Measure Accuracy	Maximum Current
$\pm 0.5 \mathrm{~V}$	$25 \mu \mathrm{~V}$	$0.5 \mu \mathrm{~V}$	$\pm(0.018 \%+150 \mu \mathrm{~V})$	$\pm(0.01 \%+120 \mu \mathrm{~V})$	100 mA
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$	$\pm(0.018 \%+400 \mu \mathrm{~V})$	$\pm(0.01 \%+140 \mu \mathrm{~V})$	100 mA
$\pm 5 \mathrm{~V}$	$250 \mu \mathrm{~V}$	$5 \mu \mathrm{~V}$	$\pm(0.018 \%+750 \mu \mathrm{~V})$	$\pm(0.009 \%+250 \mu \mathrm{~V})$	100 mA
$\pm 20 \mathrm{~V}$	1 mV	$20 \mu \mathrm{~V}$	$\pm(0.018 \%+3 \mathrm{mV})$	$\pm(0.009 \%+900 \mu \mathrm{~V})$	100 mA
$\pm 40 \mathrm{~V}$	2 mV	$40 \mu \mathrm{~V}$	$\pm(0.018 \%+6 \mathrm{mV})$	$\pm(0.01 \%+1 \mathrm{mV})$	2
$\pm 100 \mathrm{~V}$	5 mV	$100 \mu \mathrm{~V}$	$\pm(0.018 \%+15 \mathrm{mV})$	$\pm(0.012 \%+2.5 \mathrm{mV})$	

$\pm(\%$ of output/measured value + offset voltage V$)$
2. $100 \mathrm{~mA}(\mathrm{Vo} \leq 20 \mathrm{~V}), 50 \mathrm{~mA}(20 \mathrm{~V}<\mathrm{Vo} \leq 40 \mathrm{~V}), 20 \mathrm{~mA}(40 \mathrm{~V}<\mathrm{Vo} \leq 100 \mathrm{~V})$, Vo is the output voltage in Volts.

Current Range, Resolution, and Accuracy (High Resolution ADC)

SMU Type	Current Range	Force Resolution	Measure Resolution ${ }^{1.2}$	Force Accuracy ${ }^{3}$	Measure Accuracy ${ }^{3}$	Maximum Voltage
HRSMU w/ ASU	$\pm 1 \mathrm{pA}$	1 fA	100 aA	$\pm(0.9 \%+15 \mathrm{fA})$	$\pm(0.9 \%+12 \mathrm{fA})$	100 V
HRSMU	$\pm 10 \mathrm{pA}$	5 fA	400 aA (with ASU) 1 fA (HRSMU)	$\pm(0.46 \%+30$ fA $+10 \mathrm{aA} \times \mathrm{Vo})$	$\pm(0.46$ \% +15 fA+10 aA x Vo)	100 V
	$\pm 100 \mathrm{pA}$	5 fA	500 aA (with ASU) 2 fA (HRSMU)	$\pm(0.3 \%+100$ fA $+100 \mathrm{aA} \mathrm{x} \mathrm{Vo)}$	$\pm(0.3$ \%+30 fA $+100 \mathrm{aA} \times \mathrm{Vo}$)	100 V
MPSMU	$\pm 1 \mathrm{nA}$	50 fA	10 fA	$\pm(0.1 \%+300 \mathrm{fA}+1 \mathrm{fA} \times \mathrm{Vo})$	$\pm(0.1 \%+200 \mathrm{fA}+1 \mathrm{fA} \times \mathrm{Vo})$	100 V
	$\pm 10 \mathrm{nA}$	500 fA	10 fA	$\pm(0.1 \%+3 \mathrm{pA}+10 \mathrm{fA} \times \mathrm{Vo})$	$\pm(0.1 \%+1 \mathrm{pA}+10 \mathrm{fA} \times \mathrm{Vo})$	100 V
	$\pm 100 \mathrm{nA}$	5 pA	100 fA	$\pm(0.05 \%+30 \mathrm{pA}+100 \mathrm{fA} \times \mathrm{Vo})$	$\pm(0.05 \%+20 \mathrm{pA}+100 \mathrm{fA} \times \mathrm{Vo})$	100 V
	$\pm 1 \mu \mathrm{~A}$	50 pA	1 pA	$\pm(0.05 \%+300 \mathrm{pA}+1 \mathrm{pA} \times \mathrm{Vo})$	$\pm(0.05 \%+100 \mathrm{pA}+1 \mathrm{pA} \times \mathrm{Vo})$	100 V
	$\pm 10 \mu \mathrm{~A}$	500 pA	10 pA	$\pm(0.05 \%+3 \mathrm{nA}+10 \mathrm{pA} \times \mathrm{Vo})$	$\pm(0.04 \%+2 \mathrm{nA}+10 \mathrm{pA} \times \mathrm{Vo})$	100 V
	$\pm 100 \mu \mathrm{~A}$	5 nA	100 pA	$\pm(0.035 \%+15 \mathrm{nA}+100 \mathrm{pA} \times \mathrm{Vo})$	$\pm(0.03 \%+3 \mathrm{nA}+100 \mathrm{pA} \times \mathrm{Vo})$	100 V
	$\pm 1 \mathrm{~mA}$	50 nA	1 nA	$\pm(0.04 \%+150 \mathrm{nA}+1 \mathrm{nA} \times \mathrm{Vo})$	$\pm(0.03 \%+60 \mathrm{nA}+1 \mathrm{nA} \times \mathrm{Vo})$	100 V
	$\pm 10 \mathrm{~mA}$	500 nA	10 nA	$\pm(0.04 \%+1.5 \mu \mathrm{~A}+10 \mathrm{nA} \times \mathrm{Vo})$	$\pm(0.03 \%+200 \mathrm{nA}+10 \mathrm{nA} \mathrm{x} \mathrm{Vo)}$	100 V
	$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	100 nA	$\pm(0.045 \%+15 \mu \mathrm{~A}+100 \mathrm{nA} \times \mathrm{Vo})$	$\pm(0.04 \%+6 \mu \mathrm{~A}+100 \mathrm{nA} \times \mathrm{Vo})$	4

1. Specified measurement resolution is limited by fundamental noise limits. Minimum displayed resolution is 1 aA at 1 pA range by 6 digits.
2. Measurements at lower range are affected strongly by vibrations and shocks. Do not place the environment of vibrations and shocks during measurements.

3 . $\pm(\%$ of output/measured value + offset current (fixed part determined by the output/measurement range + proportional part that is multiplied by Vo)
4. $100 \mathrm{~V}(10 \leq 20 \mathrm{~mA}), 40 \mathrm{~V}(20 \mathrm{~mA}<\mathrm{lo} \leq 50 \mathrm{~mA}), 20 \mathrm{~V}(50 \mathrm{~mA}<\mathrm{lo} \leq 100 \mathrm{~mA})$, lo is the output current in Amps.

Power Consumption

Voltage source mode:

Voltage Range	Power
0.5 V	$20 \times \mathrm{Ic}(\mathrm{W})$
2 V	$20 \times \mathrm{cc}(\mathrm{W})$
5 V	$20 \times \mathrm{cc}(\mathrm{W})$
20 V	$20 \times \mathrm{cc}(\mathrm{W})$
40 V	$40 \times \mathrm{Ic}(\mathrm{W})$
100 V	$100 \times \mathrm{Ic}(\mathrm{W})$

Where Ic is the current compliance setting.
Current source mode:

Voltage Compliance	Power
$\mathrm{Vc} \leq 20$	$20 \times \mathrm{lo}(\mathrm{W})$
$20<\mathrm{Vc} \leq 40$	$40 \times \mathrm{lo}(\mathrm{W})$
$40<\mathrm{Vc} \leq 100$	$100 \times \mathrm{lo}(\mathrm{W})$

MPSMU and HRSMU
Measurement and Output Range

HPSMU Module Specifications

Voltage Range, Resolution, and Accuracy (High Resolution ADC)

Voltage Range	Force Resolution	Measure Resolution	Force Accuracy 1	Measure Accuracy ${ }^{1}$	Maximum Current
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$	$\pm(0.018 \%+400 \mu \mathrm{~V})$	$\pm(0.01 \%+140 \mu \mathrm{~V})$	1 A
$\pm 20 \mathrm{~V}$	1 mV	$20 \mu \mathrm{~V}$	$\pm(0.018 \%+3 \mathrm{mV})$	$\pm(0.009 \%+900 \mu \mathrm{~V})$	1 A
$\pm 40 \mathrm{~V}$	2 mV	$40 \mu \mathrm{~V}$	$\pm(0.018 \%+6 \mathrm{mV})$	$\pm(0.01 \%+1 \mathrm{mV})$	500 mA
$\pm 100 \mathrm{~V}$	5 mV	$100 \mu \mathrm{~V}$	$\pm(0.018 \%+15 \mathrm{mV})$	$\pm(0.012 \%+2.5 \mathrm{mV})$	125 mA
$\pm 200 \mathrm{~V}$	10 mV	$200 \mu \mathrm{~V}$	$\pm(0.018 \%+30 \mathrm{mV})$	$\pm(0.014 \%+2.8 \mathrm{mV})$	50 mA

Current Range, Resolution, and Accuracy (High Resolution ADC)

Current Range	Force Resolution	Measure Resolution	Force Accuracy	Measure Accuracy ${ }^{2}$	Maximum Voltage
$\pm 1 \mathrm{nA}$	50 fA	10 fA	$\pm(0.1 \%+300 \mathrm{fA}+1 \mathrm{fA} \times \mathrm{Vo})$	$\pm(0.1 \%+300 \mathrm{fA}+1 \mathrm{fA} \times \mathrm{Vo})$	200 V
$\pm 10 \mathrm{nA}$	500 fA	10 fA	$\pm(0.1 \%+3 \mathrm{pA}+10 \mathrm{fA} \times \mathrm{Vo})$	$\pm(0.1 \%+2.5 \mathrm{pA}+10 \mathrm{fA} \times \mathrm{Vo})$	200 V
$\pm 100 \mathrm{nA}$	5 pA	100 fA	$\pm(0.05 \%+30 \mathrm{pA}+100 \mathrm{fA} \times \mathrm{Vo})$	$\pm(0.05 \%+25 \mathrm{pA}+100 \mathrm{fA} \times \mathrm{Vo})$	200 V
$\pm 1 \mu \mathrm{~A}$	50 pA	1 pA	$\pm(0.05 \%+300 \mathrm{pA}+1 \mathrm{pA} \times \mathrm{Vo})$	$\pm(0.05 \%+100 \mathrm{pA}+1 \mathrm{pA} \times \mathrm{Vo})$	200 V
$\pm 10 \mu \mathrm{~A}$	500 pA	10 pA	$\pm(0.05 \%+3 \mathrm{nA}+10 \mathrm{pA} \times \mathrm{Vo})$	$\pm(0.04 \%+2 \mathrm{nA}+10 \mathrm{pA} \times \mathrm{Vo})$	200 V
$\pm 100 \mu \mathrm{~A}$	5 nA	100 pA	$\pm(0.035 \%+15 \mathrm{nA}+100 \mathrm{pA} \times \mathrm{Vo})$	$\pm(0.03 \%+3 \mathrm{nA}+100 \mathrm{pA} \times \mathrm{Vo})$	200 V
$\pm 1 \mathrm{~mA}$	50 nA	1 nA	$\pm(0.04 \%+150 \mathrm{nA}+1 \mathrm{nA} \times \mathrm{Vo})$	$\pm(0.03 \%+60 \mathrm{nA}+1 \mathrm{nA} \times \mathrm{Vo})$	200 V
$\pm 10 \mathrm{~mA}$	500 nA	10 nA	$\pm(0.04 \%+1.5 \mu \mathrm{~A}+10 \mathrm{nA} \times \mathrm{Vo})$	$\pm(0.03 \%+200 \mathrm{nA}+10 \mathrm{nA} \times \mathrm{Vo})$	200 V
$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	100 nA	$\pm(0.045 \%+15 \mu \mathrm{~A}+100 \mathrm{nA} \times \mathrm{Vo})$	$\pm(0.04 \%+6 \mu \mathrm{~A}+100 \mathrm{nA} \times \mathrm{Vo})$	3
$\pm 1 \mathrm{~A}$	$50 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	$\pm(0.4 \%+300 \mu \mathrm{~A}+1 \mu \mathrm{~A} \times \mathrm{Vo})$	$\pm(0.4 \%+150 \mu \mathrm{~A}+1 \mu \mathrm{~A} \times \mathrm{Vo})$	

1. Specified measurement resolution is limited by fundamental noise limits.
2. $\pm(\%$ of output/measured value + offset current (fixed part determined by the output/measurement range + proportional part that is multiplied by Vo)
3. $200 \mathrm{~V}(10 \leq 50 \mathrm{~mA}), 100 \mathrm{~V}(50 \mathrm{~mA}<\mathrm{lo} \leq 125 \mathrm{~mA}), 40 \mathrm{~V}(125 \mathrm{~mA}<\mathrm{lo} \leq 500 \mathrm{~mA}), 20 \mathrm{~V}(500 \mathrm{~mA}<\mathrm{lo} \leq 1 \mathrm{~A})$, lo is the output current in Amps.

Power Consumption

Voltage source mode:

Voltage Range	Power
2 V	$20 \times \mathrm{Ic}(\mathrm{W})$
20 V	$20 \times \mathrm{Ic}(\mathrm{W})$
40 V	$40 \times \mathrm{Ic}(\mathrm{W})$
100 V	$100 \times \mathrm{Ic}(\mathrm{W})$
200 V	$200 \times \mathrm{Ic}(\mathrm{W})$

Where Ic is the current compliance setting.

Current source mode:

Voltage Compliance	Power
$\mathrm{Vc} \leq 20$	$20 \times \mathrm{lo}(\mathrm{W})$
$20<\mathrm{Vc} \leq 40$	$40 \times \mathrm{lo}(\mathrm{W})$
$40<\mathrm{Vc} \leq 100$	$100 \times \mathrm{lo}(\mathrm{W})$
$100<\mathrm{Vc} \leq 200$	$200 \times \mathrm{lo}(\mathrm{W})$

Where Vc is the voltage compliance setting and lo is output current.

Output terminal/connection:

Dual triaxial connector, Kelvin (remote sensing)

Voltage/Current Compliance(Limiting)

The SMU can limit output voltage or current to prevent damaging the device under test.
Voltage:
0 V to $\pm 100 \mathrm{~V}$ (MPSMU, HRSMU)
0 V to $\pm 200 \mathrm{~V}$ (HPSMU)
Current:
$\pm 10 \mathrm{fA}$ to $\pm 100 \mathrm{~mA}$ (HRSMU with
ASU)
$\pm 100 \mathrm{fA}$ to $\pm 100 \mathrm{~mA}$ (HRSMU)
$\pm 1 \mathrm{pA}$ to $\pm 100 \mathrm{~mA}$ (MPSMU)
$\pm 1 \mathrm{pA}$ to $\pm 1 \mathrm{~A}$ (HPSMU)
Compliance Accuracy:
Same as the current or voltage set accuracy.

About Measurement Accuracy:

RF electromagnetic field and SMU measurement accuracy:
Voltage and Current measurement accuracy of SMUs may be affected by RF electromagnetic field of strength over 3 V / m at frequencies from 80 MHz to 1 GHz . The frequency and degree of affection may vary with the installation condition of the instrument.
Conducted RF field noise and SMU measurement accuracy:
Voltage and Current measurement accuracy of SMUs may be affected by conducted RF field noise of strength over 3 Vrms at frequencies from 150 kHz to 80

MHz . The frequency and degree of affection may vary with the installation condition of the instrument.

Supplemental Information

Maximum allowable cable resistance
(Kelvin connection):
Sense: 10Ω
Force: $10 \Omega(\leq 100 \mathrm{~mA})$,

$$
1.5 \Omega(>100 \mathrm{~mA})
$$

Voltage source output resistance:
(Force line, Non-Kelvin connection)
0.2Ω (HPSMU)
0.3Ω (MPSMU, HRSMU)
Voltage measurement input
resistance: $\geq 10^{13} \Omega$
Current source output resistance: $\geq 10^{13} \Omega$
Current compliance setting accuracy (for opposite polarity):
For 1 pA to 10 nA ranges:
V/I setting accuracy $\pm 12 \%$ of range For 100 nA to 1 A ranges: V/I setting accuracy $\pm 2.5 \%$ of range Maximum capacitive load: 1 pA to 10 nA ranges: 1000 pF 100 nA to 10 mA ranges: 10 nF 100 mA and 1 A ranges: $100 \mu \mathrm{~F}$
Maximum guard capacitance:
900 pF (HPSMU, MPSMU, HRSMU) 660 pF (HRSMU with ASU)

Maximum shield capacitance: 5000 pF (HPSMU, MPSMU, HRSMU) 3500 pF (HRSMU with ASU)
Maximum guard offset voltage:
$\pm 1 \mathrm{mV}$ (HPSMU)
$\pm 3 \mathrm{mV}$ (MPSMU, HRSMU)
$\pm 4.2 \mathrm{mV}$ (HRSMU with ASU, Iout $\leq 100 \mu \mathrm{~A}$)
Noise characteristics (filter ON):
Voltage source: 0.01% of V range (rms.)
Current source: 0.1\% of I range (rms.)

Overshoot (typical, filter ON):
Voltage source: 0.03% of V range
Current source: 1\% of I range
Range switching transient noise (filter
ON):
Voltage ranging: 250 mV
Current ranging: 70 mV
Slew rate: $0.2 \mathrm{~V} / \mu \mathrm{s}$
SMU pulse setting accuracy (fixed measurement range):

Width: $0.5 \%+50 \mu \mathrm{~s}$
Period: $0.5 \%+100 \mu \mathrm{~s}$
Trigger out delay (pulsed measurements):

0 to 32.7 ms with $100 \mu \mathrm{~s}$ resolution (<pulse width)

Voltage Range, Resolution, and Accuracy (High Speed ADC)

Voltage Range	Measure Resolution	Measure Accuracy ${ }^{\mathbf{1}, 2}$
$\pm 0.5 \mathrm{~V}^{3}$	$25 \mu \mathrm{~V}$	$\pm(0.01 \%+250 \mu \mathrm{~V})$
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$\pm(0.01 \%+700 \mu \mathrm{~V})$
$\pm 5 \mathrm{~V}^{3}$	$250 \mu \mathrm{~V}$	$\pm(0.01 \%+2 \mathrm{mV})$
$\pm 20 \mathrm{~V}$	1 mV	$\pm(0.01 \%+4 \mathrm{mV})$
$\pm 40 \mathrm{~V}$	2 mV	$\pm(0.015 \%+8 \mathrm{mV})$
$\pm 100 \mathrm{~V}$	5 mV	$\pm(0.02 \%+20 \mathrm{mV})$
$\pm 200 \mathrm{~V}^{4}$	10 mV	$\pm(0.035 \%+40 \mathrm{mV})$

[^0]Current Range, Resolution, and Accuracy (High Speed ADC)

Current Range	Measure Resolution 1,2	Measure Accuracy 3
$\pm 1 \mathrm{pA}^{4}$	100 aA	$\pm(1.8 \%+12 \mathrm{fA})$
$\pm 10 \mathrm{pA}^{5}$	1 fA	$\pm(0.5 \%+15 \mathrm{fA}+10 \mathrm{aA} \times \mathrm{Vo})$
$\pm 100 \mathrm{pA}^{5}$	5 fA	$\pm(0.3 \%+30 \mathrm{fA}+100 \mathrm{aA} \times \mathrm{Vo})$
$\pm 1 \mathrm{nA}$	50 fA	$\pm(0.1 \%+300 \mathrm{fA}+1 \mathrm{fA} \times \mathrm{Vo})$
$\pm 10 \mathrm{nA}$	500 fA	$\pm(0.1 \%+2 \mathrm{pA}+10 \mathrm{fA} \times \mathrm{Vo})$
$\pm 100 \mathrm{nA}$	5 pA	$\pm(0.05 \%+20 \mathrm{pA}+100 \mathrm{fA} \times \mathrm{Vo})$
$\pm 1 \mu \mathrm{~A}$	50 pA	$\pm(0.05 \%+200 \mathrm{pA}+1 \mathrm{pA} \times \mathrm{Vo})$
$\pm 10 \mu \mathrm{~A}$	500 pA	$\pm(0.04 \%+2 \mathrm{nA}+10 \mathrm{pA} \times \mathrm{Vo})$
$\pm 100 \mu \mathrm{~A}$	5 nA	$\pm(0.03 \%+20 \mathrm{nA}+100 \mathrm{pA} \times \mathrm{Vo})$
$\pm 1 \mathrm{~mA}$	50 nA	$\pm(0.03 \%+200 \mathrm{nA}+1 \mathrm{nA} \times \mathrm{Vo})$
$\pm 10 \mathrm{~mA}$	500 nA	$\pm(0.03 \%+2 \mu \mathrm{~A}+10 \mathrm{nA} \times \mathrm{Vo})$
$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	$\pm(0.04 \%+20 \mu \mathrm{~A}+100 \mathrm{nA} \times \mathrm{Vo})$
$\pm 1 \mathrm{~A}^{6}$	$50 \mu \mathrm{~A}$	$\pm(0.4 \%+300 \mu \mathrm{~A}+1 \mu \mathrm{~A} \times \mathrm{Vo})$

1. Specified measurement resolution is limited by fundamental noise limits. Minimum displayed resolution is 1 aA at 1 pA range by 6 digits.
2. Measurements at lower range are affected strongly by vibrations and shocks. Do not place the instrument in the environment of vibrations and shocks during measurements.
3. $\pm(\%$ of output/measured value + offset current (fixed part determined by the output/measurement range + proportional part that is multiplied by Vo)
4. 1 pA range is for HRSMU with ASU.
5. 10 pA range and 100 pA range is for HRSMU with or without ASU.
6. Only for HPSMU.

MFCMU (Multi Frequency Capacitance Measurement Unit) Module Specifications

Measurement Functions
Measurement parameters: Cp-G, Cp-D, Cp-Q, Cp-Rs, Cs-Rs, Cs-D, Cs-Q, Lp-G, Lp-D, Lp-Q, Lp-Rs, Ls-Rs, Ls-D, Ls-Q, R-X, G-B, Z- θ, Y- θ
Ranging:
Auto and fixed
Measurement terminal:
Four-terminal pair configuration, four BNC (female) connectors
Cable length:
1.5 m or 3 m , automatic identification of accessories

Test Signal

Frequency:
Range: 1 kHz to 5 MHz
Minimum resolution: 1 mHz
Accuracy: ± 0.008 \%
Signal output level:
Range: 10 mVrms to 250 mVrms
Resolution: 1 mVrms
Accuracy:
$\pm(10.0 \%+1 \mathrm{mVrms})$
at four-terminal pair port of MFCMU
$\pm(15.0 \%+1 \mathrm{mVrms})$
at measurement port of MFCMU cable (1.5 m or 3.0 m)
Output impedance: 50Ω, typical
Signal level monitor:
Voltage range: Same as the voltage signal level setting range
Voltage monitor accuracy (open load):
$\pm(10.0 \%$ of reading $+1 \mathrm{mVrms})$ at four-terminal pair port of MFCMU
$\pm(15.0 \%$ of reading $+1 \mathrm{mVrms})$
at measurement port of MFCMU cable (1.5 m or 3 m)

DC Bias Function

DC voltage bias:
Range:
0 to $\pm 25 \mathrm{~V}$
Resolution:
1 mV
Accuracy:

$$
\pm(0.5 \%+5.0 \mathrm{mV})
$$

at the High and Low terminals of the MFCMU measurement port or the MFCMU $1.5 \mathrm{~m} / 3 \mathrm{~m}$ cable end

Maximum DC bias current
(supplemental information):

Impedance measurement range	Maximum DC bias current
50Ω	10 mA
100Ω	10 mA
300Ω	10 mA
$1 \mathrm{k} \Omega$	1 mA
$3 \mathrm{k} \Omega$	1 mA
$10 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$
$30 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$
$100 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$
$300 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$

Output impedance: 50Ω, typical
DC bias monitor:
Range: Same as the dc voltage bias setting range
Accuracy (open load):
$\pm(0.2 \%$ of reading $+10.0 \mathrm{mV})$ at the High and Low terminals of the MFCMU measurement port or the MFCMU $1.5 \mathrm{~m} / 3 \mathrm{~m}$ cable end

Sweep Characteristics

Available sweep parameters:
Oscillator level, DC bias voltage,
frequency (list sweep only)
Sweep type: Linear, Log
Sweep mode: Single, Double
Sweep direction: Up, Down
Number of measurement points:
Maximum 1001 points

Measurement Accuracy

The following parameters are used to express the impedance measurement accuracy at four-terminal pair port of MFCMU and measurement port of MFCMU cable.
Z_{x} : Impedance measurement value (Ω)
D_{x} : Measurement value of D
$\mathrm{E}=\mathrm{E}_{\mathrm{P}}{ }^{\prime}+\left(\mathrm{Z}_{\mathrm{S}}{ }^{\prime} /\left|\mathrm{Z}_{\mathrm{X}}\right|+\mathrm{Y}_{\mathrm{O}^{\prime}}{ }^{\prime}\left|\mathrm{Z}_{\mathrm{X}}\right|\right) \times 100$ (\%)
$\mathrm{E}_{\mathrm{P}}{ }^{\prime}=\mathrm{E}_{\mathrm{PL}}+\mathrm{E}_{\mathrm{POSC}}+\mathrm{E}_{\mathrm{P}}$ (\%)
$\mathrm{Y}_{\mathrm{O}}{ }^{\prime}=\mathrm{Y}_{\mathrm{OL}}+\mathrm{Y}_{\mathrm{OSC}}+\mathrm{Y}_{\mathrm{O}}(\mathrm{S})$
$\mathrm{Z}_{\mathrm{S}}{ }^{\prime}=\mathrm{Z}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{OSC}}+\mathrm{Z}_{\mathrm{S}}(\Omega)$
$|Z|$ accuracy \pm E (\%)
θ accuracy $\pm \mathrm{E} / 100$ (rad)
C accuracy at $\mathrm{D}_{\mathrm{x}} \leq 0.1$ $\pm \mathrm{E}$ (\%)
at $\mathrm{D}_{\mathrm{x}}>0.1$

$$
\pm \mathrm{E} \times \sqrt{ }\left(1+\mathrm{D}_{\mathrm{x}}{ }^{2}\right)
$$

D accuracy
at $\mathrm{D}_{\mathrm{x}} \leq 0.1$ $\pm \mathrm{E} / 100$
at $0.1<\mathrm{D}_{\mathrm{x}} \leq 1$ $\pm \mathrm{Ex}\left(1+\mathrm{D}_{\mathrm{x}}\right) / 100$
G accuracy
at $\mathrm{D}_{\mathrm{x}} \leq 0.1$ $\pm \mathrm{E} / \mathrm{D}_{\mathrm{x}}$ (\%)
at $\mathrm{D}_{\mathrm{x}}>0.1$ $\pm \mathrm{Ex} \sqrt{\left(1+\mathrm{D}_{\mathrm{x}}{ }^{2}\right) / \mathrm{D}_{\mathrm{x}}(\%)}$

Note: measurement accuracy is specified under the following conditions:

Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Integration time: 1 PLC or 16 PLC

Parameters $\mathrm{E}_{\text {posc }}, Z_{\text {osc }}$,

Oscillator level	$\mathbf{E}_{\text {posc }} \mathbf{(\%)}$	$\mathbf{Z}_{\text {osc }}(\mathbf{m} \Omega)$
$125 \mathrm{mV}<\mathrm{V}_{\text {osc }} \leq 250 \mathrm{mV}$	$0.03 \times\left(250 / \mathrm{V}_{\text {osc }}-1\right)$	$5 \times\left(250 / \mathrm{V}_{\text {osc }}-1\right)$
$64 \mathrm{mV}<\mathrm{V}_{\text {osc }} \leq 125 \mathrm{mV}$	$0.03 \times\left(125 / \mathrm{V}_{\text {osc }}-1\right)$	$5 \times\left(125 / \mathrm{V}_{\text {osc }}-1\right)$
$32 \mathrm{mV}<\mathrm{V}_{\text {osc }} \leq 64 \mathrm{mV}$	$0.03 \times\left(64 / \mathrm{V}_{\text {osc }}-1\right)$	$5 \times\left(64 / \mathrm{V}_{\text {osc }}-1\right)$
$\mathrm{V}_{\text {osc }} \leq 32 \mathrm{mV}$	$0.03 \times\left(32 / \mathrm{V}_{\text {osc }}-1\right)$	$5 \times\left(64 / \mathrm{V}_{\text {osc }}-1\right)$

Parameters $\mathrm{E}_{\mathrm{P},}, \mathrm{Y}_{01}, \mathbf{Z}_{\mathrm{s}}$,

Cable Length	$\mathbf{E}_{\mathbf{p l}} \mathbf{(\%)}$	$\left.\mathbf{Y}_{\mathbf{0} \mathbf{~}} \mathbf{(n S}\right)$	$\mathbf{Z}_{\mathrm{sL}}(\mathbf{m} \Omega)$
1.5 m	$0.02+3 \times \mathrm{f} / 100$	$750 \times \mathrm{f} / 100$	5.0
3 m	$0.02+5 \times \mathrm{f} / 100$	$1500 \times \mathrm{f} / 100$	5.0

f is frequency in MHz. If measurement cable is extended, open compensation, short compensation, and load compensation must be performed.
Parameters $\mathbf{Y}_{\text {osc }}, \mathbf{Y}_{0}, \mathbf{E}_{\mathbf{p}^{\prime}} \mathbf{Z}_{\mathbf{s}^{\prime}}$

Frequency	$\mathbf{Y}_{\text {osc }}(\mathbf{n S})$	$\mathbf{Y}_{\mathbf{0}}(\mathbf{n S})$	$\mathbf{E}_{\mathbf{p}}(\%)$	$\mathbf{Z}_{\mathbf{s}}(\mathbf{m} \Omega)$
$1 \mathrm{kHz} \leq \mathrm{f} \leq 200 \mathrm{kHz}$	$1 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	1.5	0.095	5.0
$200 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$2 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	3.0	0.095	5.0
$1 \mathrm{MHz}<\mathrm{f} \leq 2 \mathrm{MHz}$	$2 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	3.0	0.28	5.0
$2 \mathrm{MHz}<\mathrm{f}$	$20 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	30.0	0.28	5.0

f is frequency in Hz .
$\mathrm{V}_{\text {osc }}$ is oscillator level in mV .
Example of Calculated C/G Measurement Accuracy

Frequency	Measured Capacitance	C Accuracy ${ }^{1}$	Measured Conductance	G Accuracy ${ }^{1}$
5 MHz	1 pF	± 0.61 \%	$31 \mu \mathrm{~S}$	$\pm 192 \mathrm{nS}$
	10 pF	± 0.32 \%	$314 \mu \mathrm{~S}$	$\pm 990 \mathrm{nS}$
	100 pF	± 0.29 \%	3 mS	$\pm 9 \mu \mathrm{~S}$
	1 nF	± 0.32 \%	31 mS	$\pm 99 \mu \mathrm{~S}$
1 MHz	1 pF	± 0.20 \%	$6 \mu \mathrm{~S}$	$\pm 13 \mathrm{nS}$
	10 pF	± 0.11 \%	$63 \mu \mathrm{~S}$	$\pm 68 \mathrm{nS}$
	100 pF	± 0.10 \%	$628 \mu \mathrm{~S}$	$\pm 620 \mathrm{nS}$
	1 nF	± 0.10 \%	6 mS	$\pm 7 \mu \mathrm{~S}$
100 kHz	10 pF	± 0.18 \%	628 nS	$\pm 11 \mathrm{nS}$
	100 pF	± 0.11 \%	$6 \mu \mathrm{~S}$	$\pm 66 \mathrm{nS}$
	1 nF	± 0.10 \%	$63 \mu \mathrm{~S}$	$\pm 619 \mathrm{nS}$
	10 nF	± 0.10 \%	$628 \mu \mathrm{~S}$	$\pm 7 \mu \mathrm{~S}$
10 kHz	100 pF	± 0.18 \%	628 nS	$\pm 11 \mathrm{nS}$
	1 nF	± 0.11 \%	$6 \mu \mathrm{~S}$	$\pm 66 \mathrm{nS}$
	10 nF	± 0.10 \%	$63 \mu \mathrm{~S}$	$\pm 619 \mathrm{nS}$
	100 nF	± 0.10 \%	$628 \mu \mathrm{~S}$	$\pm 7 \mu \mathrm{~S}$
1 kHz	100 pF	± 0.92 \%	63 nS	$\pm 6 \mathrm{nS}$
	1 nF	± 0.18 \%	628 nS	$\pm 11 \mathrm{nS}$
	10 nF	± 0.11 \%	$6 \mu \mathrm{~S}$	$\pm 66 \mathrm{nS}$
	100 nF	± 0.10 \%	$63 \mu \mathrm{~S}$	$\pm 619 \mathrm{nS}$

1. The capacitance and conductance measurement accuracy is specified under the following conditions:
$D_{x} \leq 0.1$
Integration time: 1 PLC
Test signal level: 30 mVrms
At four-terminal pair port of MFCMU

Atto Sense and Switch Unit (ASU) Specifications

AUX Path Specification
Maximum Voltage
100 V (AUX input to AUX common)
100 V (AUX input to circuit common)
42 V (AUX common to circuit common)
Maximum Current
0.5 A (AUX input to Force output)

ASU Supplemental Information

Band width (at -3 dB)
$<30 \mathrm{MHz}$ (AUX port)

SMU CMU Unify Unit (SCUU) and Guard Switch Unit (GSWU) Specifications

The SCUU switches either two SMUs or CMU to the output port. The MPSMU and HRSMU are supported as a module. The SCUU has dc bias adapter function by the SMU as dc bias source. Also error compensation function is supported. To connect the SCUU, the dedicated cable assembly is supplied. It can help to connect correctly and easily, and it eliminates cabling mistake.
The GSWU switches open when using SMUs and close when using CMU for the guard return path automatically depending on which the SCUU output is used for the capacitance measurement or not.

Supported SMU
MPSMU and HRSMU
For SCUU
Inputs:
Four triaxial ports: for Force1, Sense1, Force2, and Sense2 Four BNC ports: for MFCMU One SCUU control port
Outputs:
Four triaxial ports: for Force1/CMUH, Sense1, Force2/CMUL, and Sense2 One GSWU control port Three LEDs, SMU/CMU output status indicator

Docking Mode

Direct and indirect mode

For GSWU
Input:
One control port from SCUU
Mini pin plug port: 2 ports (to Guard1, to Guard2
Output:
One LED, connection status indicator

SCUU Supplemental Information
 SMU Path:

Offset current: < 20 fA
Offset voltage: $<100 \mu \mathrm{~V}$ at 300 sec
Closed channel residual resistance: < $200 \mathrm{~m} \Omega$
Channel isolation resistance:
$>10^{15} \Omega$

CMU Path:

Test Signal
Signal output level additional errors
(CMU bias, open load):
± 2 \% (direct docking)
± 7 \% (indirect docking)
Signal output level additional errors
(SMU bias, open load):
$\pm 5 \%$ (direct docking, $\geq 10 \mathrm{kHz}$)
$\pm 10 \%$ (indirect docking, $\geq 10 \mathrm{kHz}$)
Output impedance: 50Ω, typical
Signal level monitor additional errors (open load):
± 2 \% (CMU bias), direct docking
± 5 \% (SMU bias), direct docking
± 7 \% (CMU bias), indirect docking
$\pm 10 \%$ (SMU bias), indirect docking

DC Bias Function

DC voltage bias (CMU bias):
Range:
0 to $\pm 25 \mathrm{~V}$
Resolution: 1 mV
Additional errors (for CMU bias): $\pm 100 \mu \mathrm{~V}$ (open load)
DC voltage bias (SMU bias):
Range:
0 to $\pm 100 \mathrm{~V}$
Resolution: 5 mV
Additional errors (for SMU voltage
output accuracy): $\pm 100 \mu \mathrm{~V}$ (open load)
DC bias monitor additional errors (open load):
$\pm 20 \mathrm{mV}$, direct docking
$\pm 30 \mathrm{mV}$, indirect docking
Output impedance:
50Ω, (typical)
DC output resistance: 50Ω (CMU
bias), 130Ω (SMU bias)

Measurement Accuracy

Impedance measurement error is given by adding the following additional error E_{e} to the MFCMU measurement error.
$\mathrm{E}_{\mathrm{e}}= \pm\left(\mathrm{A}+\mathrm{Z}_{\mathrm{S}} /\left|\mathrm{Z}_{\mathrm{X}}\right|+\mathrm{Y}_{\mathrm{o}}\left|\mathrm{Z}_{\mathrm{X}}\right|\right) \times 100$ (\%)
Z_{X} : Impedance measurement value (Ω) A:
0.05 \% (direct docking) or 0.1 \% (indirect docking)
Z_{s} :
$500+500 \times \mathrm{f}(\mathrm{m} \Omega)$
Y_{o} :
$1+1000 \times \mathrm{f} / 100(\mathrm{nS})$
(direct docking, $x 2$ for indirect docking)
Note: f is frequency in MHz.
When the measurement terminals are extended by using the measurement cable, the measurement accuracy is applied to the data measured after performing the open/short/load correction at the DUT side cable end.

Note: The error is specified under the following conditions:

Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Integration time: 1 PLC or 16 PLC
Measurement additional errors:

Agilent EasyEXPERT Software

Functions

Operation mode:
Application test mode, Classic test mode, Quick test mode
Key Functions:

- Categorized and predefined application library
- Device definition
- Measurement parameter settings
- Save/Recall My Favorite Setups
- Define/customize application library
- Execute measurement (Single/Repeat/Append)
- Quick test execution
- Save/Recall measurement data and settings
- Test result data management
- Import/Export device definition, measurement settings, my favorite setup, measurement data, and application library
- Graph plot display/analysis/printing
- Switching matrix control
- Workspace management
- Self- test, self calibration, diagnostics

Application Library

Category:
Sample test definitions for the following applications. They subject to change without notice.
Structure, CMOS, Bipolar (BJT),
Memory, Mixed Signal Device, TFT, Discrete, Reliability, Power Device, Nanotechnology, Utility

Measurement Mode Details

The Agilent B1500A supports the following measurement modes:

- Staircase Sweep
- Multi-Channel Sweep*
- Pulsed Sweep
- Staircase Sweep with Pulsed Bias
- IV Sampling
- High Speed IV Sampling
- CV Sweep
- Linear Search**
- Binary Search**
* EasyEXPERT supports VAR1 and VAR1'.
**They are supported by FLEX command only.
Each SMU can sweep using VAR1
(primary sweep), VAR2 (secondary sweep), or VAR1' (synchronous sweep).

VAR1

Primary sweep controls the staircase (dc or pulsed) voltage or current sweep.
VAR2
Subordinate linear staircase or linear pulsed sweep. After primary sweep is completed, the VAR2 unit output is incremented.

Maximum number of steps: 128 VAR1'
Staircase or pulse sweep synchronized with the VAR1 sweep. Sweep is made with a user specified ratio and offset value. VAR1' output is calculated as VAR1' = a \times VAR $1+b$, where " a " is the user specified ratio and " b " is the user specified offset value.

CONST

A source unit can be set as a constant voltage or current source depending on the unit.

Staircase Sweep Measurement Mode:

Forces swept voltage or current, and measures DC voltage or current. One channel can sweep current or voltage while up to ten channels can measure current or voltage. A second channel can be synchronized with the primary sweep channel as an additional voltage or current sweep source. Number of Steps: 1 to 1001
Sweep type: linear or logarithmic Sweep direction:

Single or double sweep
Hold Time:
0 to $655.35 \mathrm{~s}, 10 \mathrm{~ms}$ resolution Delay Time:

0 to $65.5350 \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
Pulsed Sweep Measurement Mode:
Forces pulsed swept voltage or current, and measures DC voltage or current. A second channel can be programmed to output a staircase sweep voltage or current synchronized with the pulsed sweep output.

Staircase Sweep with Pulsed Bias Measurement Mode:

Forces swept voltage or current, and measures DC voltage or current. A second channel can be programmed to output a pulsed bias voltage or current. A third channel can be synchronized with the primary sweep channel as an additional voltage or current sweep source.

Sampling (Time Domain)

Measurement Mode
Displays the time sampled
voltage/current data (by SMU) versus time.
Sampling channels: up to 10
Sampling points:
For linear sampling:
1 to $100,001 /$ (number of channels)
For \log sampling:
1 to $1+$ (number of data for 11 decades)
Sampling mode: linear, log
Sampling interval range:
$100 \mu \mathrm{~s}$ to $2 \mathrm{~ms}, 10 \mu \mathrm{~s}$ resolution
2 ms to $65.535 \mathrm{~s}, 1 \mathrm{~ms}$ resolution
For $<2 \mathrm{~ms}$, the interval is
$\geq 100 \mu \mathrm{~s}+20 \mu \mathrm{~s} \times$ (num. of channels - 1)
Hold time, initial wait time:
-90 ms to $-100 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
0 to $655.35 \mathrm{~s}, 10 \mathrm{~ms}$ resolution
Measurement time resolution:
$100 \mu \mathrm{~s}$

Search Measurement Mode:

Forces and measures voltage or current by using linear search method or binary search method.

Bias Hold Function

This function is used to keep source output after measurement. Source modules apply the specified bias between measurements in a quick test or application test that defines some classic test setups, or a repeat measurement. And the source modules change the output value and the unused modules are disconnected when the next measurement is started.

Current Offset Cancel

This function subtracts the offset current from the current measurement raw data, and returns the result as the measurement data. This function is used to compensate the error factor (offset current) caused by the measurement path such as the measurement cables, manipulators, or probe card.

Time Stamp

The B1500A supports a time stamp function utilizing an internal quartz clock.

Resolution: $100 \mu \mathrm{~s}$
Other Measurement Characteristics
Measurement Control:
Single, Repeat, Append, and Stop

SMU Setting Capabilities:
Limited auto ranging,
voltage/current compliance, power compliance, automatic sweep abort functions, self- test, and self-calibration

Arithmetic and Analysis Functions

 User FunctionsUp to 20 user-defined functions can be defined using arithmetic expressions.
Measured data and pre-defined variables can be used in the computation. The results can be displayed on the LCD.

Arithmetic Operators

$+,-,{ }^{*}, /, \wedge$, abs (absolute value), at (arc tangent), avg (averaging), cond (conditional evaluation), delta, diff (differential), \exp (exponent), integ (integration), lgt (logarithm, base 10), \log (logarithm, base e), mavg (moving average), max, min, sqrt, trigonometric function, inverse trigonometric function, and so on

Physical Constants

Keyboard constants are stored in memory as follows:
q: Electron Charge, 1.602177 E- 19 C
k: Boltzman's Constant, 1.380658 E-23
ε (e): Dielectric Constant of
Vacuum, 8.854188 E- 12

Engineering Units

The following unit symbols are also available on the keyboard:
$\mathrm{a}\left(10^{-18}\right), \mathrm{f}\left(10^{-15}\right)$, p $\left(10^{-12}\right)$, $\mathrm{n}\left(10^{-9}\right)$, u or $\mu\left(10^{-6}\right), \mathrm{m}\left(10^{-3}\right)$, $\mathrm{k}\left(10^{3}\right), \mathrm{M}\left(10^{6}\right), \mathrm{G}\left(10^{9}\right), \mathrm{T}\left(10^{12}\right)$, P (10^{15})

Analysis Capabilities Overlay Graph Comparison

A graphics plot can be stored and overlaid.

Scale

Auto scale and zoom

Marker

Marker to min/max, interpolation, direct marker, and marker skip

Cursor

Direct cursor
Line
Two lines, normal mode, grad mode, tangent mode, and regression mode

Automatic Analysis Function

On a graphics plot, the markers and lines can be automatically located using the auto analysis setup. Parameters can be automatically determined using automatic analysis, user function, and read out functions.

Data Variable Display

Up to 20 user-defined parameters can be displayed on the graphics screen.

Analysis Functions

Up to 20 user-defined analysis functions can be defined using arithmetic expressions.
Measured data, pre-defined variables, and read out functions can be used in the computation. The results can be displayed on the LCD.

Read Out Functions

The read out functions are built-in functions for reading various values related to the marker, cursor, or line.

Graph Plot

Display Mode

Data display window can be printed. Only X-Y graph can be printed.

Graph Plot File

Graph plot can be stored as image
data to clip board or mass storage device.
File type: bmp, gif, png, emf

Output

Display Modes
X-Y graph, list display, and parameter display
X-Y Graph Display
X -axis and up to eight Y -axis
Linear and log scale
Real time graph plotting
List Display
Measurement data and calculated user function data are listed in conjunction with VAR1 step number or time domain sampling step number. Up to 20 data sets can be displayed.

Other Functions

Import/Export files.
File type:
Agilent EasyEXPERT format,
XML-SS format, CSV format
Data Storage
Hard disk drive
DVD-ROM/CD-R/CD-RW drive

Interfaces

GPIB port for instrument control
Interlock port
USB port (USB 2.0, front 2, rear 2)
LAN interface
100BASE-TX/10BASE-T
Trigger in/out
Generic purpose digital I/O
Trigger I/0
Only for GPIB remote mode. Trigger in/out synchronization pulses before and after setting and measuring dc voltage and current. Arbitrary trigger events can be masked or activated independently.

Attached Software

Prober Control execution files
Desktop EasyEXPERT software (free version)
4155/56 setup file converter tool
Supported operating systems:
Microsoft Windows 2000
Professional and XP Home or Professional
A VXI plug\&play driver for the
B1500A is supplied.
Supported operating systems:
Microsoft Windows 2000
Professional and XP Professional

General Specifications

Temperature Range

Operating: $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Humidity range

Operating: 20\% to $70 \% \mathrm{RH}$, non- condensing
Storage: 10% to 90% RH, non- condensing

Altitude

Operating: 0 m to $2,000 \mathrm{~m}(6,561 \mathrm{ft})$
Storage: 0 m to $4,600 \mathrm{~m}$ ($15,092 \mathrm{ft}$)

Power requirement

ac Voltage: 90 V to 264 V
Line Frequency: 47 Hz to 63 Hz
Maximum Volt-Amps (VA)
B1500A: 900 VA
Regulatory Compliance
EMC:
IEC61326-1:+A1/EN61326-1:+A1 AS/NZS 2064.1
Safety:
CSA C22.2 No.1010.1-1992
IEC61010-1:+A2/EN61010-1:+A2
UL3111-1:1994

Certification

CE, CSA, NRTL/C, C-Tick
Dimensions
B1500A:
420 mm W $\times 330 \mathrm{~mm} \mathrm{H} \times 575 \mathrm{~mm}$ D
N1301A-100 SMU CMU unify unit:
$148 \mathrm{~mm} \mathrm{~W} \times 75 \mathrm{~mm} \mathrm{H} \times 70 \mathrm{~mm}$ D
N1301A-200 Guard switch unit:
33.2 mm W $\times 41.5 \mathrm{~mm} \mathrm{H} \times 32.8 \mathrm{~mm} \mathrm{D}$

Weight

B1500A (empty): 20 kg
B1510A: 2.0 kg
B1511A: 1.0 kg
B1517A: 1.2 kg
B1520A: 1.5 kg
E5288A: 0.5 kg
N1301A-100: 0.8 kg
N1301A-200: 0.1 kg

Furnished Accessories

Power cable
Manual CD-ROM
Desktop EasyEXPERT CD-ROM
Software CD-ROM (including
VXIplug\&play driver and utility tools)

Order Information

Mainframe and Modules

B1500A
Semiconductor device analyzer
mainframe
Configure the following modules:
High power SMU (HPSMU) Medium power SMU (MPSMU)
High resolution SMU (HRSMU)
Atto-sense switch unit (ASU)
Multi frequency CMU (MFCMU)
B1500A-050
50 Hz line frequency
B1500A-060
60 Hz line frequency
B1500A-UK6
Commercial calibration certificate with test data
B1500A-ABA
English documentation
B1500A-ABJ
Japanese documentation

B1500 Accessories

16444A-001 Keyboard
16444A-002 Mouse
16444A-003 Stylus pen
N1253A-100 Digital I/O cable
N1253A-200 Digital I/O BNC box
N1254A-100 GNDU to Kelvin adapter
N1254A-108 ASU magnetic stand
SMU Cables
16494A-001 Triaxial cable (1.5 m)
16494A-002 Triaxial cable (3 m)
16493K-001 Kelvin triax. cable (1.5 m)
16493K-002 Kelvin triax. cable (3 m)
B1500A CMU Accessories
N1300A-001 CMU cable (1.5 m)
N1300A-002 CMU cable (3 m)
N1301A- 100
SMU CMU unify unit (SCUU)
N1301A-102
SMU CMU unify unit cable (3 m)
N1301A-110
SMU CMU unify unit magnetic stand
N1301A-200
Guard switch unit (GSWU)
N1301A-201
Guard switch unit cable (1 m)
N1301A-202
Guard switch unit cable (3 m)

Other Accessories

16442A Test fixture
16493G Digital I/O cable
16493J-001 interlock cable (1.5 m)
16493J- 002 interlock cable (3 m)
16493L-001 GNDU cable (1.5 m)
16493L- 002 GNDU cable (3 m)

Additional Modules

B1510A
High power source/monitor unit module
B1511A
Medium power source/monitor unit
module
B1517A
High resolution source/monitor unit module
E5288A
Atto-sense and switch unit
B1520A
Multi frequency capacitance
measurement unit module

For more information about Agilent products, go to www.agilent.com.

For more information about Agilent products, please call one of the centers listed below and ask to speak with an Agilent sales representative.

Americas
Brazil (11) 4197-3600
Canada (French) 1877 894-4414
Canada (English) 1800 447-8378
Mexico 33 134-5841
United States 1800 829-4444

Asia/Asia Pacific

Australia 1800 629-485
China 1800 276-3059
Hong Kong 85225997889
India 91/11 690-6156
Japan 0120 421-345
Malaysia 1800 880-780
New Zealand 0800738378
Philippines 1800 1651-0135
Singapore 1800 276-3059
South Korea 080 778-0011
Taiwan 0800 047-662
Thailand 1800 2758-5822
Europe
Austria (01) 25 125-7183
Belgium (0) 2 404-9380
Denmark 080301040
Finland 20 547-9999
France (0) 825010710
Germany (0) 1805 24-63 34
Greece 20 547-9999
Ireland 016158393
Italy 0292608333
Luxembourg (0) 2 404-9340
Netherlands (0) 20 547-9999
Poland 20 547-9999
Russia 20 547-9999
Spain 916313383
Sweden 020 120-9975
Switzerland (Italian) (0) 292608484
Switzerland (German) (0) 1735-9300
Switzerland (French) (0) 825010700
United Kingdom (0) 7004 222-222

Middle East

Israel 20 547-9999
Technical data subject to change without notice. Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.
EasyEXPERT is U.S. registered trademarks of Agilent Technoglogies.
© Copyright 2005, 2006 Agilent Technologies
Printed in USA April 1, 2006

[^0]: 1. $\pm(\%$ of output/measured value + offset voltage V)
 2. Averaging is 128 samples in 1 PLC
 3. Only for MPSMU and HRSMU.
 4. Only for HPSMU.
